

ANANDALAYA PERIODIC TEST -1 Class : IX

M.M: 40 Time: 2 Hours

General Instructions:					
	General Instructions:				
	i) All questions are compulsory.				
	ii) This question paper contains 19 questions.				
	iii) Questions 1-8 in Section A are very short-answer type questions carrying 1 mark each.				
	iv) Questions 9-12 in Section B are short-answer type questions carrying 2 marks each.				
	v) Questions 13-16 in Section C are long-answer I type questions carrying 3 marks each.				
	vi) Questions 17 -19 in Section D are long-answer II type questions carrying 4 marks each				
SECTION – A					
1.	Which ordered pair is a solution of $y = 4x$?	(1)			
	(a) $(16, 4)$ (b) $(4, 4)$ (c) $(4, 16)$ (d) $(2, 4)$				
2.	(-2, 0) lies on the	(1)			
	(a) y- axis (b) x- axis (c) $y = x$ (d) $x + y = 0$				
_					
3.	Decimal representation of a rational number cannot be	(1)			
	(a) terminating (b) non-terminating				
	(c) non-terminating repeating (d) non-terminating non-repeating				
4	Which one of the following is a polynomial?	(1)			
4.	Which one of the following is a polynomial?	(1)			
	(a) $\frac{x}{2} - x^{-2}$ (b) $\sqrt{5x} - 1$ (c) $x^2 + \frac{1}{x^{-1}}$ (d) $\frac{1}{x} + x$				
-		(1)			
5.	Justify 3.070070007 is a rational number.	(1)			
6.	$(27)^{2/3} \times (8)^{2/3}$	(1)			
	Find the value of $\frac{(27)^{2/3} \times (8)^{2/3}}{(9)^{\frac{3}{2}}}$	(-)			
	(9)2				
7.	The degree of the polynomial $p(x) = 3x^5(2x^2 - x + 6)$ is	(1)			
<i>.</i>	The degree of the polynomial $p(x) = 5x (2x - x + 6) is$	(1)			
8.	If $P(x) = x^2 - 3\sqrt{3}x + 1$ then find $P(3\sqrt{3})$.	(1)			
	OR				
	If $f(x) = x^2 - 4x + 6$ find $f(1) - f(-1)$				
	SECTION – B				
	$(x^{b+c})^2 (x^{a+b})^2 (x^{a+c})^2$	(2)			
9	Show that : $\frac{(x^{b+c})^2 (x^{a+b})^2 (x^{a+c})^2}{(x^a x^b x^c)^4} = 1$				
10.	Find the value of a, if the line $3y = ax + 7$ passes through the point i) (3, 4) (ii) (1, 2)	(2)			
	OR	~ /			
	Four years before age of mother was 3 times the age of her daughter. Write a linear equation to				
	represent this situation in the form $ax + by + c = 0$.				

11. If the point (2k - 3, k + 2) lies on the line 2x + 3y + 14 = 0, find k. (2)

12. Find the value of *a* if the polynomial $f(x) = x^4 - 2x^3 + 3x^2 - ax + 3a - 7$ when divided by (2) (x + 1) leaves the remainder 19

By remainder theorem, find the remainder when p(y) is divided by g(y), where $p(y) = 4y^3 - 12y^2 + 5y - 4$ and g(y) = 2y - 1.

13 Match the columns I and II.

	Ι	П
i)	4x + 3y = 12 cuts the $x - axis$ at	a) (0, y)
ii)	x = a is a line	b) $4x - 3y = 7$
iii)	(1, -1) is a solution of the equation	c) (a, a)
iv)	Any point on y-axis is of the form	d) (3,0)
v)	Any point on $y = x$ is of the form	e) $x + 2y = 1$
vi)	x = -3, y = 2 is a solution of the	f) Parallel to y- axis
	equation	

14. Factorise:i)
$$2y^3 + y^2 - 2y - 1$$
.
ii) $32x^4 - 2y^4$

15. If $x = 2 + \sqrt{3}$, find the value of $x^3 + \frac{1}{x^3}$

Express $1.3\overline{2} + 0.\overline{35}$ as a fraction in simplest form.

¹⁶ If
$$\frac{3+\sqrt{7}}{3-\sqrt{7}} + \frac{3-\sqrt{7}}{3+\sqrt{7}} = a + b\sqrt{7}$$
, find the values of *a* and *b*. (3)

OR

17. Prove that :
$$\frac{1}{3_{-}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{3}} + \frac{1}{\sqrt{3}+1} = 1$$
 (4)

Simplify :
$$\frac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}$$

18. If a + b + c = 5 and ab + bc + ca = 10, then prove that $a^3 + b^3 + c^3 - 3abc = -25$ (4)

19. The parking charges of a car in a parking lot is `20 for the first 3 hours and `10 for subsequent (4) hours. Taking total parking time to be *x* hours and total charges as `*y*, write a linear equation in two variables to express the above statements. Draw a graph for the linear equation and read the charges for five hours.

(3)

(3)

(3)